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Abstract 
The Center for Empirically Based Software Engineering 
helps improve software development by providing 
guidelines for selecting development techniques, 
recommending areas for further research, and supporting 
software engineering education. A central activity toward 
achieving this goal has been the running of “eWorkshops” 
that capture expert knowledge with a minimum of overhead 
effort to formulate heuristics on a particular topic. The 
resulting heuristics are a useful summary of the current 
state of knowledge in an area based on expert opinion. 
 This paper discusses the results to date of a series of 
eWorkshops on software defect reduction. The original 
discussion items are presented along with an encapsulated 
summary of the expert discussion. The reformulated 
heuristics can be useful both to researchers (for pointing 
out gaps in the current state of the knowledge requiring 
further investigation) and to practitioners (for 
benchmarking or setting expectations about development 
practices). The heuristics will be further refined during a 
physical expert workshop at the 2002 Metrics Symposium. 
 
1. Building an experience base for software 

engineering  
 
Software development is a people- and knowledge-
intensive activity; it is a rapidly changing field, and 
although it is slowly maturing, many activities are still ad 
hoc and depend upon personal experiences. In order to cope 
with such restrictions as firm deadlines and shrinking 
budgets, software-developing organizations need assistance 
in setting up and running increasingly critical projects. 
 In order to reach their goals, software development 
teams need to understand and choose the right models and 
techniques to support their projects. They must answer key 

questions: what is the best life-cycle process model to 
choose for a particular project (from waterfall to extreme 
programming)? What is an appropriate balance of effort 
between inspections and testing in a specific context? What 
are the savings from buying a readily available software 
component instead of developing it? 

These questions are not easy to answer. In some cases 
the knowledge exists to answer such questions; in other 
cases it does not, so instead of relying on knowledge and 
experience, we must trust our instincts. In order to support 
this decision-making activity, we need to develop 
empirically based software models in a systematic way, 
covering all aspects from high-level lifecycle models to 
low-level techniques, in which the effects of process 
decisions are well understood. However, context plays an 
important role as most projects and organizations differ. 
Consequently, the knowledge must be formulated relative 
to the development context and project goals.  
 The Center for Empirically-Based Software 
Engineering (CeBASE)1 was organized to support this goal. 
CeBASE accumulates empirical models in order to provide 
validated guidelines for selecting techniques and models, 
recommend areas for research, and support software 
engineering education. CeBASE’s objective is to transform 
software engineering from a fad-based practice to an 
engineering-based discipline in which development 
processes are selected based on what is known about their 
effects on products, through synthesis, derivation, 
organization, and dissemination of empirical knowledge on 
software development and evolution phenomenology. 
 CeBASE is a National Science Foundation-sponsored 
research center led by personnel with extensive industry 
and government experience, including co-authors 
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Professors Barry Boehm (University of Southern 
California) and Victor Basili (University of Maryland and 
Fraunhofer Center for Experimental Software Engineering 
– Maryland). CeBASE collects, documents, and 
disseminates knowledge on software engineering gained 
from experiments, case studies, observations, and real 
world projects. While some of this empirical knowledge 
might be well known by the community, it has not yet been 
documented. Although this knowledge is believed to be 
generally applicable, the effects of its application have 
never been systematically investigated making it difficult to 
discern when it is useful. Some of this knowledge is 
distributed among many individuals, which means that we 
need to gather the pieces together and facilitate the 
collection and management of collective knowledge. The 
initial focus of CeBASE is on two high-leverage areas of 
software engineering, defect reduction and COTS based 
development. 
 
2. Collecting expert knowledge on defect 

reduction 
 
This paper describes the process and results to date of 
building up our understanding of what is currently 
understood about defect reduction in software 
development.  
 The goal of this work is to create a set of heuristics that 
represent what experts in the field consider to be the current 
state of understanding about the topic. To seed the 
discussion, a set of statements were proposed by Barry 
Boehm and Vic Basili in a “top-10” list that attempted to 
capture 10 useful and commonly accepted statements about 
the phenomena of software defects: the cost and effort 
associated with defects, the impacts of defects on software 
quality, and effective methods for reducing defects.  
CeBASE then sponsored a series of events to test, collect 
data on, and ultimately refine those statements. This series 
of events consisted of several eWorkshops followed by a 
physical capstone meeting at the Metrics Symposium, 
2002, in Ottawa, Canada. Most participants in these events 
are experts in their respective domain. Our lead discussants 
(workshop leaders) formed part of the CeBASE team that 
interacted with an international group of invited participant 
experts.   
 Meetings among experts discussing their findings and 
recording their discussions are a classical method for 
creating and disseminating knowledge. By analyzing such 
discussions new knowledge can be created and the results 
can be shared. This is generally achieved by holding 
workshops. Workshops, however, possess limitations: 1) 
experts are spread all over the world and would have to 
travel, and 2) workshops are usually oral presentations and 
discussions, which are generally not captured for further 
analysis. To overcome these problems we designed the 
concept of the eWorkshop, using the facilities of the 
Internet.  

 The eWorkshop is an on-line meeting, which replaces 
the usual face-to-face workshop. While it uses a Web-based 
chat-application, it is structured to accommodate the needs 
of a workshop without becoming an unconstrained on-line 
chat discussion.  The goal is to synthesize new knowledge 
from a group of experts as an efficient and inexpensive 
method in order to populate the CeBASE experience base. 
The idea behind the eWorkshop was to use simple 
collaboration tools, thus minimizing potential technical 
problems and decreasing the time it would take to learn the 
tools. Simultaneously, we set up a process, a support team 
and control room to ensure that there would be as few 
disturbances as possible once the eWorkshop was running. 
To minimize disturbances during the meeting and to 
capture important information, we relied on a support team 
operating from a single control room.  This support team 
consisted of the following roles: moderator, director, 
scribe, tech support, and analyst. The moderator was 
responsible for monitoring and focusing the discussion 
(e.g., proposing items on which to vote) and maintaining 
the agenda.  Of the support team, only the moderator was 
an active participant in the sense that he contributed actual 
responses during the meeting.  The director was responsible 
for assessing and setting the pace of the discussion.  He 
decided when it was time to redirect the discussion onto 
another topic.  As the discussion moved from one topic to 
another, the scribe highlighted the current agenda item and 
captured and organized the results displayed on the 
whiteboard area of the screen.  When the participants 
reached a consensus on a particular item through a vote, the 
scribe summarized and updated the whiteboard to reflect 
the outcome.  The contents of the whiteboard became the 
first draft of the meeting minutes.  The analyst coded the 
responses according to the pre-defined taxonomy.  The 
analyst entered one or more codes to categorize responses 
as they were entered.  The tech support was responsible for 
handling any problems that might occur with the tools.  For 
example, some participants accidentally closed their 
sessions and had difficulty logging into the meeting for a 
second time.  The tech support assisted these participants in 
troubleshooting their problems  
More details about the eWorkshop tool and processes can 
be found in [2]. 
 
3. Results to date 
 
During the series of three eWorkshops on defect reduction, 
participants contributed their own data and experiences on 
the topic, which resulted in the following types of results: 

• Refinement: The consensus of the experts was that 
the original statement was generally true, but new 
considerations were introduced that represented a 
deepening of understanding. For example, the 
statement might be accepted but bounds were put 
on the circumstances under which it applied. 

• Addition: The experts added new and related 



 

hypotheses that had some support and broadened 
the understanding of the same general topic. 

• Restatement: The experts felt that the statement 
was not accurate, and reformulated a statement 
that was more generally accepted. 

• Meta-statement: The experts were not satisfied 
with the original statement but discussed why the 
current state of knowledge did not allow it to be 
reformulated. 

 In the following sections, the original statements are 
presented along with a summary of the eWorkshop 
discussion concerning it. At the end of each section, the 
results of the discussion are summarized by the 
presentation of a new set of hypotheses or statements, 
organized using the following notation: 

• x.1: Used to label a statement that is a refinement 
of the original statement x. 

• xa: Used to label a statement that was added in 
response to statement x. 

• x’: Used to label a statement that re-states more 
accurately the topic addressed by original 
statement x. 

• xm: Use to label a meta-statement concerning the 
current knowledge regarding statement x. 

 Excerpts of the discussions are presented below, along 
with the resulting statements about software defects. The 
full discussion summaries can be found at the CeBASE 
web site.2 
 
3.1 Effort to find and fix 
 
“Finding and fixing a software problem after delivery is 
often 100 times more expensive than finding and fixing 
it during the requirements and design phase.” 
 
Discussion: General data were presented that supported an 
effort increase of approximately 100:1. Don O’Neill 
described data from IBM Rochester [10] in the pre-meeting 
feedback that found an increase in effort of about 13:1 for 
defect slippage from code to test and a further 9:1 increase 
for slippage from test to field (so, a ratio of about 117:1 
from code to field). From Yoshihiro Matsumoto’s 
experience in a software factory of 2600 IT workers, 
average rework time after shipment is 22.85 hours versus 
less than 10 minutes if the work had been done prior to 
shipment (a factor of 137:1). Other corroboration came 
from Ed Allen’s experiences with a telecommunications 
client as well as Noopur Davis’ experience. 
 An important distinction that emerged was that the 
large effort multiplier holds for severe defects; many 
defects with lesser impact will not cost appreciably more to 
change after delivery than before.  

• Barry Boehm pointed out that the 100:1 factor was 
about right for critical defects on large projects, 
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illustrated for example by the data from the Data 
Analysis Center for Software [11].  

• Sunita Chulani also agreed that this factor was 
consistent with her experience for severe defects. 

 For non-severe defects, the effort multiplier was not 
nearly as large. Otto Vinter indicated that his data (which 
do not include requirements defects) show an 
approximately 2:1 relationship between after-shipment and 
before-shipment debugging effort: 14 hours after release 
versus 7.4 hours in testing before release. Barry Boehm 
said that the 2:1 relationship also held for the million-line 
CCPDS-R project done by TRW for the Air Force 
(described by Walker Royce [13]), in which early risk 
resolution and well-validated modular architecting were 
used to reduce early defects. Victor Basili also had data 
from NASA’s Johnson Space Center, which didn’t measure 
post-delivery defects but still showed that the effort 
multiplier associated with different defect types are 
different: the effort just to find a defect increased from  

• 1.2 hours early in the project to 1.5 hours late in 
the project, for non-severe defects 

• 1.4 hours early in the project to 3.0 hours late in 
the project, for severe defects. 

 Other variables likely to have an impact were 
proposed, although no supporting data was available. Gary 
Thomas pointed out that post-shipment costs would be 
expected to be raised even further when a different 
organization than the one that developed the software is 
responsible for the maintenance of the system. Philip 
Johnson said that research has so far neglected 
development environments that do not fit into the 
“waterfall family” of development approaches. For 
example, in XP, requirements and implementation phases 
are so entwined that it no longer makes sense to talk about 
"early" vs. "late" phases of development. 
 
Result Summary: EWorkshop participants generally 
agreed that finding and fixing software defects after 
delivery is much more expensive than fixing during early 
stages of development – for certain types of defects. A 
100:1 increase in effort from early phases to post-delivery 
was a usable heuristic for severe defects, but for non-severe 
defects the effort increase was not nearly as large. 
However, this heuristic is appropriate only for certain 
development models with a clearly defined release point; 
research has not yet targeted new paradigms such as 
extreme programming (XP), which has no meaningful 
distinction between “early” and “late” development phases. 
Item 1’.  Finding and fixing a severe software problem 

after delivery is often 100 times more 
expensive than finding and fixing it during 
the requirements and design phase. 

Item 1.1.  Finding and fixing non-severe software 
defects after delivery is about twice as 
expensive as finding these defects pre-
delivery. 



 

 
3.2 Amount of avoidable rework 
 
“About 40-50% of the effort on current software 
projects is spent on avoidable rework.” 
 
Discussion: Data in support of large amounts of rework on 
projects were cited by several participants: 

• Vic Basili said that the 40-50% claim is borne out 
by the Cleanroom studies at NASA Goddard’s 
Space Flight Center [1]  

• Barry Boehm pointed out that Capers Jones' books 
(e.g. [9]) have data on rework costs, that indicate 
that the rework fraction goes up with the size of 
the project, and can go as high as 60% for very 
large projects.  

• Don O’Neill submitted pre-meeting feedback data 
from the national benchmarking effort showing 
that the range across projects is wide, on the order 
of 20% to 80%. 

 However, there was some agreement that higher-
maturity projects spend considerably less effort on rework. 
Brad Clark has published analyses of the effects of process 
maturity [6], in which the benefits at higher levels of 
maturity are traced mainly to the reduced rework effort. 

• Gary Thomas, using data from Raytheon, cited a 
range of about 10-20% avoidable rework on 
higher-maturity projects.  

• Barry Boehm said that some TRW projects, such 
as CCPDS-R, were also able to reduce rework 
effort down to 10-20%. 

 Because of this disparity between high- and low-
maturity projects, Don O’Neill suggested that we should 
distinguish disciplined software engineering, structured 
software engineering, and ad hoc programming and seek to 
associate with each a characteristic level of effort spent on 
avoidable rework. 
 In general, comparing rework costs across projects is 
dangerous because it can be defined in several different 
ways. (For one example, Vic Basili pointed out that the 
rework effort collected from the Software Engineering 
Laboratory (SEL) at NASA was measured as the effort 
required to make changes due to defect corrections.) 
Winsor Brown pointed out that, further complicating the 
comparison, is how one accounts for the defect: if a 
detailed design defect is introduced during testing, it might 
be counted as a “test” defect or a “design” defect (although 
in the latter case it would likely be much cheaper to fix than 
other design defects). 
 But there are other potential rework measures for 
which researchers might not even be able to collect metrics, 
for example the rework that is found on volatile 
development teams, where people are often added or 
removed and as a consequence spend time relearning or 
redoing the same things.  
 Preventing defects and reducing rework is not free, but 

Barry Boehm reported that at TRW it was found that early 
prevention effort (via reviews, inspections, and analysis 
tools) had a 5:1 or 10:1 payoff. 
 
Result Summary: Most eWorkshop participants believed 
that significant amounts of effort are spent on avoidable 
rework. However, the data across many projects had a 
much wider range than the proposed 40-50%; on some 
projects cited, for example, it was as low as 10-20%. In 
general, it was felt necessary to distinguish different types 
of software engineering process so that we could examine 
the avoidable rework rates for different types of 
environments.  
Item 2’: A significant percentage of the effort on 

current software projects is typically spent on 
avoidable rework. 

Item 2.1: The amount of effort spent on avoidable 
rework decreases as process maturity 
increases. 

 
3.3 Defects causing rework  
 
“About 80% of the avoidable rework comes from 20% 
of the defects.” 
 
Discussion: On this topic, little data was put forward. 
While most participants (Thomas, O’Neill, Rifkin, Allen, 
Basili) indicated they believed that most of the avoidable 
rework comes from a small number of defects, no data 
from personal experience was cited. Some confirmatory 
data from the SEL and from the work of Khoshgoftaar and 
Allen was described.  
 Some time was spent trying to make definitions more 
clear. First, “rework” was defined broadly to include the 
effects of such things as changing operating systems, 
databases, or customer base; possibly also the re-
configuration of tools.  
 Stan Rifkin suggested that the definition be refined by 
clarifying that “avoidable rework” is related to changes that 
are corrective (to mitigate the effect of defects) and 
performance-related (to improve system performance). A 
consensus then emerged that unavoidable rework was 
rework that came from other sources than defects, e.g. from 
adaptive, preventive, or user-requested changes to the code 
or architecture. Otto Vinter suggested to expand this 
definition by proposing that unavoidable rework could be 
caused by some defects that are simply too hard to prevent.  
 Most of the discussion centered on suggesting what 
types of defects were most likely to cause 
disproportionately large amounts of rework. Barry Boehm 
said that in his experience one source of high-rework 
defects is "architecture-breakers:" defects whose fix 
requires you to significantly change the architecture, which 
then ripples into design and code changes.  
 Stan Rifkin described his belief that it costs more to fix 
errors that are found "inappropriately" late in the process. 



 

For example, we ought to be finding and fixing function 
errors early in the cycle and timing errors later, so function 
errors that aren’t found until the later stages will cause a 
higher amount of rework. Barry Boehm commented that 
IBM data (from Ram Chillarege’s papers [5]) do indicate 
that some defects tend to be found earlier (e.g., function 
defects) and others tend to be found later (e.g., timing 
defects). Another implication of this is that timing defects 
are probably more expensive to fix than function defects, 
because they can’t be found in earlier phases where fixing 
would be cheaper. 
 
Result Summary: There was general agreement that 
relatively few defects tend to cause most of the avoidable 
rework on software projects. (However, it was clear that 
there is a significant amount of unavoidable rework as well 
that comes from such sources as adaptive maintenance. We 
need to spend more work on characterizing the types of 
rework and their causes.) There wasn’t a lot of 
confirmatory evidence about the 80/20 rule, but there 
weren’t any strong counterexamples either. In terms of the 
implications of this statement, there was a general 
consensus that characterizing high-rework defects would be 
worthwhile. 
Item 3’: Most of the avoidable rework comes from a 

small number of software defects, where 
avoidable rework is defined as work done to 
mitigate the effects of errors or to improve 
system performance. 

Item 3a: Some rework is simply unavoidable, for 
example, work arising from adaptive, 
preventive, or user-requested changes. 

Item 3.1: Defects causing high amounts of rework are 
likely to be those that are “architecture-
breakers” or that are found 
“inappropriately” late in the development 
process. 

 
3.4 Modules contributing defects  
 
“About 80% of the defects come from 20% of the 
modules and about half the modules are defect free” 
 
Discussion: Data collected during development showed 
that defects are widespread among modules before release. 
Don O’Neill had data from the National Software Quality 
Experiment3 (NSQE) that showed that almost no modules 
pass through an inspection without some defects being 
found. Dan Roy had student and industrial data from TSP 
which indicated that only about 10% of modules should be 
considered defect-free at compile time, progressing to 
around 90% by system test. 

When the decision was made to focus the discussion 
on defects resulting from failures occurring after software 
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delivery, the data submitted did tend to indicate that a 
majority of the defects come from relatively few modules. 
Aside from Dan Roy’s TSP data showing that only 10% of 
the modules had any defects, 

• Ed Allen cited studies of mature 
telecommunications products showing that only 
10% of the modules that changed from one release 
to another contributed to user failures; 

• Stan Rifkin recalled data from Nortel switches 
showing that 80% of the defects came from 20% 
of the most-changed modules; 

• Christof Ebert said that data from Alcatel 
confirmed that 20% of modules contain about 
40% to 80% of defects, depending on product line 
[8]; 

• Otto Vinter had data that 70% of defects come 
from 19% of modules. 

Gary Thomas and Dan Roy (based on work on Landsat-D) 
also believed the heuristic to be true, although they had no 
hard data. 
 However it was recognized that the 80/20 heuristic is 
not a hard and fast rule but varies based on environmental 
characteristics such as: development processes, quality 
goals, complexity and age of the system, and degree of 
reuse.  
 
Result Summary: This statement should really be split into 
two parts. As to whether about 80% of the defects come 
from 20% of the modules, some supporting data was 
submitted and the general consensus is that this heuristic 
can be used as a general rule of thumb. However, it should 
not be assumed to be true for all systems, but varies based 
on environmental characteristics such as development 
processes and quality goals.  
 On the second half of the statement, that half the 
modules are defect free, less data was submitted. Data from 
software inspections during development indicates that 
almost no modules are defect free; however post-release 
failure counts from an embedded system showed that about 
40% of the modules contributed no defects. 
Item 4’: As a general rule of thumb, 80% of a 

system’s defects come from 20% of its 
modules. However, the relationship varies 
based on environment characteristics such as 
processes used and quality goals. 

Item 4’’: During development, almost no modules are 
defect-free as implemented. 

Item 4’’’: Post-release, about 40% of modules may be 
defect-free. 

 
3.5 Defects contributing downtime  
 
“About 90% of the downtime comes from at most 10% 
of the defects.” 
 
Discussion: The discussion began with a disparity of 



 

opinions about whether organizations are collecting any 
data of this kind. Ray Madachy said that the intent of the 
heuristic was clear but he had no experience with 
organizations where downtime was a focus of 
measurement. Philip Johnson said he had seen that some 
companies have defect databases but it is highly unlikely 
that the information is traced back to resulting downtime or 
resulting changes. Stan Rifkin said that he had in fact seen 
data collected by clients of his but they are kept private, 
because the clients’ contracts depend on service level 
agreements that give them a competitive edge. 
Of those who had a feel for such data: 

• Stan Rifkin said that in lower process maturity 
organizations, the downtime comes from a much 
larger spread of the defects than just 10%; 

• Christof Ebert said that it depends on how you do 
the accounting, but that in telecommunications 
systems about 10% to 30% of all defects are 
classified as causing downtime and blocking 
systems; 

• Gary Thomas said that this was a hard statement 
to support based on evaluating the data collected 
but that anecdotally, in his environment, for 
operational systems only 2% of defects recorded 
caused the system to go down (i.e. were Category 
1 defects where the system was “Dead in the 
Water”). 

As Christof Ebert pointed out, what complicates the 
accounting is that downtime is not only a function of the 
system quality but also the environment, circumstances of 
usage, and the cost and time required for repair. Philip 
Johnson thought it unlikely that developers ever collect 
data at the level of detail that could answer this question, 
since there’s no evidence that the effort required to trace 
defects to results would have a payoff for them. 
 
Result Summary: On this statement, there was little 
consensus. There was a wide disparity of opinions about 
whether organizations even collect this information, and 
what they do with it if it is collected. Much of the 
discussion focused on what measures would need to be 
collected if organizations wanted useful insight in this area. 
Item 5m: Insufficient data have been collected to posit 

a relationship between defects and the 
downtime they cause. 

 
3.6 Contribution of peer reviews 
 
“Peer reviews catch 60% of the defects.” 
 
Discussion: Participants submitted a wide range of data on 
this issue. 

• Oliver Laitenberger submitted a list of published 
data from several companies, in which defect 
detection effectiveness ranged from 19% to 93%, 
with most (6/10) of the sources falling in the 50%-

70% range.  
• Bill Elliott provided data from a large project at 

Harris GCSD showing 64% of total defects in the 
product were found by inspection activities, and 
mentioned that these results seemed typical for the 
division, which had an average defect detection 
effectiveness of 68%. He also provided data 
summarizing industry averages for the number of 
defects remaining in software at various phases of 
the lifecycle. The averages (over hundreds of 
programs) show a 90% reduction in the number of 
defects between the design phase (99.5 
faults/KLOC) and the beginning of testing phases 
(9.4 faults/KLOC), with most of that reduction 
due to inspection activities. 

• Stan Rifkin referenced data from a case study in 
industry showing a rate of 70-80% for 
organizations with inspection experience.  

• Don O’Neill summarized data received by the 
National Software Quality Experiment from 
across many organizations to show that the 
average detection rate was about 50-65% for less 
mature organizations, rising to 70-80% for 
structured software engineering organizations 
(which account for the majority of practitioners), 
and again to 85-95% for organizations employing 
disciplined software engineering practices. 

• Dan Roy cited SEI PSP data showing an average 
of 60% of errors caught during design and code 
reviews, rising to 80% with the addition of cross 
reviews. 

• Otto Vinter cited a study of various techniques to 
prevent requirements-related defects, which found 
that various forms of review techniques could 
together find about 60% of the requirements-
related defects. 

• James Miller cited data from experiments where 
review effectiveness was about 50%. 

• Winsor Brown cited Michael Fagan’s claim 
(which he has made since 1985) of “95% of 
defects found before testing” due to Fagan-style 
inspections. 

 Thus the 60% heuristic seemed useful as a rule of 
thumb to describe the data that was submitted – although 
that data described inspections in several lifecycle phases 
(requirements, design, or code), with different process 
definitions, in various domains. The discussion began with 
an attempt to do a better comparison of the data by at least 
agreeing on a common definition of the defect detection 
rate as a measure of review effectiveness. 
 Vic Basili proposed that the detection rate should 
be measured as the percentage found during a given review 
of all defects discovered in the product before release (that 
is, effectiveness should be determined by comparing the 
number of defects found during reviews with the number 
found during testing activities). The majority of participants 



 

felt that, using this definition, a valid heuristic is that 
reviews find 60-90% of defects. [The 90% value as a 
"fuzzy upper bound" was supported by publications by 
Capers Jones, Richard Lindner [10], Tim Olson [12], and 
also from the data submitted by Brown, Laitenberger, and 
O'Neill (for disciplined teams).] As Philip Johnson pointed 
out, this definition is only meaningful in an environment 
where there is a clear boundary between development and 
release. 
 Several participants felt that this definition of defect 
detection rate does not capture all of the important aspects 
in measuring review effectiveness. Otto Vinter and Dan 
Port proposed a second definition, related to but extending 
the first: A review’s defect detection rate should be 
measured as a percentage of all defects found over the 
lifetime of the product, including those found post-release. 
Vic Basili objected on the grounds that the total number of 
post-release defects can never be definitively known. 
However, Bill Elliott said that techniques exist to estimate 
the number of post-release defects at ship time.  
 
Result Summary: On this issue there was consensus. 
Several participants described confirmatory evidence in the 
pre-meeting feedback and during the discussion. Although 
numbers varied, most sources reported that reviews caught 
more than half of a product’s defects regardless of the 
domain, level of maturity of the organization, or lifecycle 
phase during which they were applied.  
Item 6’: Reviews catch more than half of a product’s 

defects regardless of the domain, level of 
maturity of the organization, or lifecycle 
phase during which they were applied. 

 
3.7 Contribution of perspective-based reviews  
 
“Perspective-based reviews catch 35% more defects 
than non-directed reviews.” 
 
Discussion: The only data submitted come from Oliver 
Laitenberger, who observed a 20-60% detection rate due to 
perspective-based reviews during controlled experiments. 
[To preserve impartiality, the eWorkshop organizers did 
not enter their own data into the discussion, but a good 
summary of experiences with perspective-based reviews 
can be found in [14].] These data were observed for PBR, a 
procedural approach to the individual preparation for 
reviews. Despite the lack of data, participants tended to 
agree in general that such reviews had promise for 
increased effectiveness, since they:  

• provide more assurance that all pages of a review 
document are covered equally. That is, giving 
reviewers a perspective or scenario to follow helps 
keep them focused when they might normally lose 
interest or get tired toward the end. (Barry Boehm)  

• help enforce a “speed limit” by requiring 
reviewers to process the information they read 

from their particular point of view, rather than 
skimming quickly over it. (Dan Roy)  

• alter thinking patterns, by asking people to review 
the information not by itself but by relating it back 
to some particular point of view. (James Miller)  

 Since perspective-based reviews seem to provide an 
effective way for reviewers to do the individual preparation 
phase, subsequent discussion centered on the relative 
importance of team meetings. Oliver Laitenberger felt that 
the individual preparation phase is more important for 
finding defects than the team meeting, so that efforts spent 
to improve an individual’s effectiveness at finding defects 
in the first place are more important than efforts spent at 
optimizing the team meeting afterwards. Eileen Fagan 
disputed this by saying that Michael Fagan has data that 
show more defects found as a result of the meetings than 
were discovered during preparation. Winsor Brown 
wondered if the apparent discrepancy could be explained 
by the fact that, in Fagan's paradigm, inspection 
participants during the preparation phase are only required 
to prepare themselves to fulfill their role in the inspection 
meeting, at most identifying “areas of concern” that may be 
addressed during the meeting. Hence, the objective of 
individual preparation is not to identify defects explicitly. 
 Participants did generally agree that the review 
meeting has positive effects even aside from defect 
detection, such as filtering out false positives, allowing 
participants to learn from each other, and convincing 
authors to submit future documents with fewer defects 
(Oliver Laitenberger, Eileen Fagan, Otto Vinter, Barry 
Boehm).  
 
Result Summary: Few data were provided to quantify the 
effectiveness of perspective-based reviews. However, most 
participants agreed that having multiple perspectives 
represented during software reviews was an effective 
practice. Discussion centered on why this might be so and 
the implications as a result for review processes. 
Item 7’: Having multiple perspectives represented 

during software reviews is an effective 
practice. 

 
3.8 Contribution of disciplined personal practices  
 
“Disciplined personal practices can reduce defect 
introduction rates by up to 75%.” 
 
Discussion: The pre-meeting feedback contributed little 
data concerning the effectiveness of disciplined personal 
practices. Don O’Neill cited figures from the NSQE 
showing that disciplined software engineering practices in 
general lowered defect insertion rates (10-15 
defects/thousand lines vs. 20-30 defects/thousand lines for 
structured software engineering and 40-60 defects/thousand 
lines for undisciplined, ad hoc processes) as well as defect 
detection rates. Barry Boehm mentioned that similar rates 



 

were seen during the calibration of the COQUALMO 
model: average defect introduction rates were 10/KLOC in 
requirements, 20/KLOC in design, and 30/KLOC in code 
(numbers are not cumulative across phases). 
 Dan Roy felt that the phrase defect introduction must 
be clarified. For example, the Personal Software Process 
defines a “defect” as anything that requires modification to 
the product, including compile errors. Because the NSQE is 
intended to measure inspection effectiveness, it doesn't use 
(nor does it need to) a definition that is as inclusive. Oliver 
Laitenberger agreed, saying that the focus of an inspection 
should not be on syntactical defects, which can be caught 
more cheaply by a compiler. Thus Dan Roy’s definition 
would include many more items than are commonly 
counted in inspection data. 
 Participants spent time refining the heuristic by 
discussing what kinds of practices could be included under 
the heading “disciplined personal practices.” The majority 
felt that PSP was not the only such practice, just the best 
known. Cleanroom was nominated as another such practice 
(Vic Basili, Barry Boehm), and Winsor Brown pointed out 
that under a suitably broad definition, even disciplined 
practices of “desk checking” could be included. There was 
a bit of debate about whether extreme programming (XP) 
practices could be included, although no clear consensus 
emerged.  
 Although little quantitative evidence of benefits for 
disciplined personal practices was established, participants 
did believe such practices provide benefits, especially in 
the areas of: 

• Reducing defect introduction rates  
• Increasing defect detection rates – although 

inspection yield may be lower because better 
practices introduce fewer defects into the product 
in the first place (Barry Boehm)  

• Reducing the cost of repairing a defect – because 
disciplined practices may mean that the artifact 
creator can repair the artifact with less effort 
(Martin Feather)  

 In the absence of consensus on the issue, participants 
felt that a decision could only be made using some kind of 
framework to relate the defect insertion/removal numbers 
we do have from various phases. Two candidates were 
proposed: 

• Martin Feather identified the "Defect Detection 
and Prevention" framework, an effort led by Steve 
Cornford of JPL. Although intended more for 
hardware defects, it seems applicable to hardware, 
software and combinations [7].  

• Barry Boehm mentioned a model called 
COQUALMO, currently in its first draft, which 
tries to do this [3]. 

 
Result Summary: Few participants submitted data to 
support the heuristic concerning benefits of disciplined 
personal practices. Some discussion time was spent to 

come to a consensus as to what exactly should be included 
in the definition of such practices, although agreement was 
not reached on all candidates. Participants felt that the 
effectiveness of disciplined practices was related to a 
number of issues – defect introduction, removal, and cost-
to-fix rates – across multiple stages of the lifecycle, and 
that without a framework to relate such numbers no global 
estimate of effectiveness could be reached. The discussion 
ended with two such frameworks being proposed. 
Item 8’: The effectiveness of disciplined personal 

practices is related to a number of issues 
(such as defect introduction, removal, and 
cost-to-fix rates) across multiple stages of the 
lifecycle. 

Item 8m: The real effect of personal practices on 
software defects cannot be quantified without 
a framework for relating defect introduction 
and removal rates across lifecycle phases. 

 
3.9 Cost of high-dependability  
 
“All other things being equal, it costs 50% more per 
source instruction to develop high-dependability 
software products than to develop low-dependability 
software products. However, the investment is more 
than worth it if significant operations and maintenance 
costs are involved.” 
 
Discussion: Barry Boehm, who formalized the original 
heuristic, explained that the phrase "all other things being 
equal" in Item 9 came from the context of the COCOMO II 
calibration, which found that it was necessary to normalize 
the effects of often-correlated variables such as system 
complexity, development time and storage constraints. The 
total system cost escalation factor becomes a good deal 
higher when these effects are compounded. 
 The data contributed by participants was sparse, but 
did indicate that high dependability is much more 
expensive than 50%. Dan Roy cited a study at NASA HQ 
that found a factor of 3 increase between the cost of 
relatively low-dependability ground software ($70/LOC) 
and that of high-dependability flight software ($220/LOC). 
Christof Ebert also reported that Alcatel considers high-
dependability software 10 times more expensive in the 
domain of distributed embedded legacy real-time 
environments. 
 Don O’Neill addressed the question of whether 
development processes suitable for high-dependability 
software are more expensive, by using data from the NSQE 
to track the relative cost of ad-hoc, structured, and 
disciplined software engineering. NSQE data show that 
structured software engineering is 100% more expensive 
than ad-hoc while disciplined costs 200% more.  
 Although participants found no appropriate measures 
during the discussion, Frank Anger felt that having ways to 
measure “levels of confidence” or “levels of dependability” 



 

for a system, and relating those levels to productivity rates 
or costs levels, was still a useful research goal. 
 
Result Summary: High dependability software costs more 
per source instruction than low dependability software 
products. This being the consensus, participants of the 
discussion tended to agree that the cost factor is much more 
than 50% higher for high-dependability. Participants 
suggested that the cost may be from 3 to 10 times more 
expensive. 
Item 9’: High-dependability software costs three to 

ten times more per source instruction than 
low-dependability software. 

 
3.10 Software quality at delivery  
 
“About 40-50% of user programs enter use with 
nontrivial defects.” 
 
Discussion: Participants began by discussing whether a 
majority of commercial systems contain defects at the time 
of release. Although no direct statistics were cited, several 
supporting facts were proposed that seemed to indicate a 
high likelihood of software being released with nontrivial 
defects: 

• Results from the NSQE, cited by Don O’Neill, 
reveal that during development almost every 
inspection finds some significant defects. In over 
3,000 inspection sessions, only a couple dozen 
have ever produced a zero yield.  

• Dan Roy said that PSP data on hundreds of 
engineers shows that any program bigger than 200 
LOC will have some bug in it. If only 10% of 
these are "nontrivial" then any program bigger 
than 2KLOC has one of these nontrivial defects.  

• A rough estimate by Otto Vinter that every 
commercial product has a re-release every six 
months, not necessarily for updates in 
functionality but rather also to correct nontrivial 
defects that surface after some time in use, seems 
a consequence of high rates of systems entering 
use with nontrivial defects.  

 Barry Boehm narrowed the discussion by noting that 
the original intent of the statement was to measure the 
software written by software users, not professional 
developers. The participants reached a consensus around a 
definition proposed by Vic Basili, defining a user program 
as one written by a non-professional software developer for 
use by other than himself. To help illustrate that this is a 
real phenomenon, Scott Henninger gave the example of 
NASA, where scientists often write their own software to 
analyze the data being returned from satellites. Given this 
definition, the only data that could be found was the 
original data Barry Boehm cited for the heuristic: lab 
studies reported 35-90% of models had defects; 21-26% of 
operational spreadsheet models had defects [4]. 

 Given the lack of data, participants discussed if this 
was a heuristic that was important to be further 
investigated. Winsor Brown felt the answer was “yes” and 
the underlying issue is that non-professional programmers 
can be helped if the software engineering field can reach 
out and teach them basic principles, for example for the 
process of creating high-quality spreadsheets. Scott 
Henninger felt the important issue was whether we had a 
true understanding of the difference between professional 
and non-professional programmers; how many 
professionals might not be actually applying what we 
would consider good software engineering practices?  
 
Result Summary: There was a consensus that a majority 
of systems have non-trivial defects when they enter use, 
although participants felt that the figure is higher than 40-
50% and not limited only to user-created programs. 
Experience seems to indicate that a large percentage of 
software systems of all types contain defects that affect 
execution. Such information can serve as a baseline for 
future assessments of development effectiveness. 
Item 10’: More than half of all types of software 

systems enter use with defects that affect 
execution. 

 
4. Implications for researchers 
 
Aside from recognizing where consensus agrees on aspects 
of software defect reduction, the eWorkshops were also 
helpful in identifying areas where the current state of the 
knowledge is insufficient to draw the level of conclusions 
that were desired. In this way the participants also helped 
point to important open research questions. For example, 
before the items on the original list can be entirely 
corroborated, some gaps in the existing knowledge must be 
addressed: 

• Item 5m: Insufficient data have been collected to 
posit a relationship between defects and the 
downtime they cause. 

• Item 8m: The real effect of personal practices on 
software defects cannot be quantified without a 
framework for relating defect introduction and 
removal rates across lifecycle phases. 

 Additionally, during the discussions important ideas 
were raised for extending the list, or for identifying 
situations in which the items on the list do not give enough 
information: 

• How do we measure the impact of software 
defects in non-waterfall lifecycles, where 
requirements and implementation phases are so 
intertwined that it no longer makes sense to talk 
about “early” versus “late” phases of 
development? 

• What are the root causes for different types of 
defects, and can we find preventive mechanisms 
that can improve resulting software quality? 



 

• What are the root causes for rework effort on 
projects, and can we better distinguish when 
rework is avoidable and when it is necessary? 

 
5. Implications for practitioners 
 
For practitioners, the resulting list of statements represents 
a summary of what an influential sector of the software 
engineering community feels to be the current state of the 
knowledge in an important area, defect reduction. It shows 
that there are some underlying principles of software 
development that tend to hold across development 
environments and problem domains, and begins to identify 
some of the important factors that can cause results to vary 
from one project to another. For example, several 
statements described evidence that increased process 
maturity affects the results of software development in a 
positive way (e.g. Item 2.1, which said that effort spent on 
avoidable rework decreases as process maturity increases). 
Such statements can be useful for benchmarking 
(comparison of a particular project to what is known in 
general) and decision-making (summarizing what can be 
expected from software development in general). 
 
6. Conclusions 
CeBASE has an ambitious goal of collecting relevant 
empirically-based software engineering knowledge. Based 
on our experiences on the topic of defect reduction, the 
eWorkshop has been shown to be a mechanism for 
inexpensively and efficiently capturing this information.  
The eWorkshops have been useful for testing the items in 
the top-ten defect reduction list, and we have obtained 
additional references and data that seek to classify when 
specific defect reduction heuristics are applicable.  
 To provide a capstone for this series of discussions, we 
are holding a final, physical workshop co-located with the 
International Symposium on Software Metrics 2002 in 
Ottawa. Participating experts will argue for or against the 
revised statements, and present data to back up their 
position. The workshop will result in an updated, final list 
of heuristics useful to broad swathes of the software 
engineering community as a representation of what the 
field has learned based on years of observation of 
developers at work. The heuristics will be recorded along 
with a summary of the contributed data and observations so 
that the conclusions can be traced back to their supporting 
evidence. 
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